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NuMERICAL EXAMPLE
Motor Data
Power: 10 kW.
Rated voltage: Ex =220V.
Rated current: 52.2 A.
Rated speed: ny = 2250 r/min,
Rotor resistance: R = 0.274 Q.
Rotor inductance at rated speed: L = 0.01 H.
Inertia: J =12N'm-s%
Resulls ‘
Ts = 43 N-'m.
Kip = 0.084.
K2¢ = 0.87.
oy = 235rad/s.
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On-Line Learning Optimal Control Using Successive
Approximation Techniques

M. D. LEVINE a~xp T. VILIS

Abstract—The application of learning theory to on-line optimiza-
tion of unknown or poorly defined plants is discussed. An on-line
optimization procedure is achieved by means of a learning algorithm
which alters a trainable controller on the basis of an instantaneous
performance criterion or subgoal. The subgoal is related to the over-
all goal, the integral cost, by means of successive approximations to
the Hamilton—Jacobi equation. The resulting piecewise linear con~-
troller is implemented by means of an encoder consisting of threshold
logic units and a classifier consisting of a set of logic switching func-
tions. The classifier is determined by means of an algorithm de-
veloped by Arkadev and Braverman. Features of the learning
algorithm are illustrated by minimum-time and minimum-time-fuel
problems.

I. INTRODUCTION

This paper considers the on-line regulator problem for an unknown
continuous plant whose outputs (states) are sampled at discrete-time
intervals and which can be described by

zim + 1) = fla(m)ulm)) + 2(m + 1) 1)

where u(m) is an r-dimensional control vector, z(m) is an n-dimen-
sional state vector, and z(m) is an n-dimensional vector representing
a stationary Gaussian process. A computer (Fig. 1) is used to syn-
thesize a state feedback controller u(m) = w(z(m)) which will return
the plant to some desired termirial manifold, denoted by the set of
states M, from any disturbed state 2(m) &€ M while minimizing a
performance criterion
—1

4]
= X Le@u@) T @)
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where L(z,u) is the instantaneous cost and (p — m )7 is the time to
reach /. The minimal V(x(m)) is denoted by V*(x(m)) and the cor-
responding controller is denoted by uw*(x(m)).

A method of successive approximations which computes a con-
verging sequence of controllers wo(z)ui(z),-  ,up(z),- -, u* (@),
each of which provides stable control over the entire X space, has
been developed for known continuous plants [6], [7]. This method
also converges for known discrete plants, as shown in Vilis [8].

To find a controller uz(z), given a stable controller u;_;(z), we
employ the following steps.

Step 1: Evaluate the general performance criterion which corre-
sponds to the controller uzi(z(m)),

p—1
> Lz(@)usa(3))- T. (3)

i=m

Vi(z(m)) =

Step 2: Synthesize a new controller u;(x(m)) by minimizing
H(:v(m + 1)}$(m)7uk(7n)7.[’k)
= min [H(@(m + 1)3(m)uim),Ve)] &)

ucU
where
H@z(m + 1),z(m)u(@m),Vi) = Lz(m)u(m))-T + Vilx(m + 1))
— Valz(m)). (5)
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On repeating the sequence we find that Vi(z(m)) = Via(z(m))
and that the series converges to V*(z(m)) ask — .1

We intend in this paper to show how the above steps can be im-
plemented on-line for an unknown plant subject to noise. The learn-
ing control algorithm proposed consists of two training phases which
correspond to the two steps above: 1) an overall goal training phase
in which the general performance- V;(z) is evaluated (Fig. 1), and?
2) a controller training phase in which the subgoal H(z(m + 1),
z(m),u(m),Vz) is used to synthesize uz(z) (Fig. 2).

As pointed out by Jones [3] and Lambert and Levine [4], it is
important that the overall goal and subgoal be related so that opti-
mization of the subgoal leads to eventual optimization of the overall
goal. Such a relationship between H and V is proven in [6]-[8].

The controller training phase is shown schematically in Fig. 2.
Initially the controller can be considered a stochastic automaton
being modified according to the subgoal H [shown in Fig.2(a), (b)].
Fu and MecMurtry [2] have demonstrated the effectiveness of this
method in a noisy environment. Following this, the controller is con-
solidated into a minimized switching function shown in Fig. 2(c).
This controller is then used in the goal training phase (Fig. 1).

II. METHODS OF FUNCTION STORAGE

The learning algorithm must optimize both the subgoal H and
the goal V on-line. This involves storing and updating values of the
goal, controller, and subgoal as functions of their respective variables.

1Notethat, in (4),Ve(z(m)) isindependent of #(m) and thus can bere written as
minge gr [L(z(m),u(m)) T + Vi(x(m -+ 1)}], the equation used in Bellman's
dynamic pregramming. The difference here is that & refers to iterations in the
strategy space and is unrelated to m, which specifies temporal progression along
any plant trajectory. Thus one cannot simply equate this minimum to Vg4
(x(m)), but instead must repeat Step 1.

2 If no stable u;_; is available to evaluate V%, one can train such a controller

bi‘l starting in phase 2) with some arbitrary stable subgoal such as # = x(m +
15218

The goal function is stored as V (h(m)) where 2:(m) corresponds to
the quantized value of the 7th component of the vector z(m) such
that ki(m) can take on the values -+ - ~2A,— A,0,4,2A- - -,

Since the controller u(z) may be a multidimensional function of a
multidimensional vector, its storage requires a different approach.
Suppose a number of planes are drawn where the intercepts are uni-
formally random in some region of X space. For 2 point z on one side
of the plane g;(x) > 0, while for z on the opposite side g:(z) < 0.
Let this relationship be encoded by a binary variable I; where I; can
take on the set of values B = [0, 1]. Then, if g:(z) > 0,let I; = 1
and, if g;(z) < 0, let I; = 0.

In general, for k planes, the Cartesian product B¥ =B X B X-:-B
is formed. Since B = [0, 1], each combination of k variables defines a
vertex on a k-dimensional real unit cube which can be expressed
functionally by a standard product f(Z). In Fig. 3, for example, region
7 in X space is represented by the standard product f(I1,1,,13) =
ILnI:NI;. Encoding the X space in this manner allows the direct
synthesis of a piecewise linear feedback controller in such a way that
it can be stored in a digital computer as a series of binary terms, or
easily implemented by logic hardware.

The function w(I(m)) is restricted to a finite set of quantized
values. These consist of the set U = [ul,u?---,*] where s is the
number of different control choices and each element i is an -
dimensional vector in the control space.

Finally, the subgoal function H is stored in terms of the quantized
elements ui, 7 = 1,-.,5,and I/, j = 1,---,d. Thus, one value of the
subgoal will be stored for each element of the Cartesian product
w X Iii=1---5,j=1--,d.

ITI. ConTrROLLER TRAINING PHASE

In Fig. 3 each vertex of the hypercube must be assigned to some
element u of the control set to define the function »(Z(m)). This is
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accomplished by the on-line reinforcement training of a stochastic
automaton, a method used successfully for controller training [5],
[7], [9]. State encoding as described here provides a simpler method
of transition from stochastic control to deterministic control.

First, let us summarize the method of training the stochastic
automaton [7]. The latter [Fig. 2 (b)] is restricted to outputs ¢* such
that ¢;# = 1or0and Z;= 1 274 = 1. With this restriction we can de-
code ¢* into the proper member of U by simply multiplying the former
by a gain matrix X. The gain matrix consists of s columns with each
column composed of the vector u? = [uf,---,u.57, ¢ = 1,--+,5. Let
the probability of ¢* for input 7 beIl;?, a component of the s-dimen-
sional probability vector II°>. The relationship between probability
vectors of two successive time instances is given by the transition
equation

II*(m + 1) = oIl*(m) + (1 — a)X*(m), 0<a<l (6)

where « controls the rate of convergence and A*(m) is the reinforece-
ment vector with components A; = 1 or 0 and ) _5_ 1 M = 1. These
are chosen on the basis of the subgoal H*(u?) = H[z(m + 1),z(m),
w*(I*(m)),V(k(m))], which in turn is evaluated from repeated trajec-
tories in the same way as the subgoals of [5] and [9]. If, for a particu-
lar encoded state 7, the stored H?(uf) is such that

H*(u') = min [H*(u)], )

i=1s

then the reinforcement vector A? has components A; = 1 and A; = 0,
j#tandj =1, s

Training is terminated when the stochastic automaton has reached
a certain prescribed level of confidence. A deterministic relationship
between ¢* and I* is then defined by a set of logic functions Fj,
j =1, s, where

dj
gt = Fi(l) = kl_Jlfjk(I) (8)

such that, if, for the vertex I?, represented by the standard product
FI, I = max;—;,... s [IL;*], then f(Z) is included in the union of
standard products defined as Fj(Z). This particular f(I) is not in-
cluded in any other union, thus assuring that, for vertex I, F,(I?)
= 0form £ jand m = 1,---,s, and that the gain matrix X is still
compatible. The controller is represented by the three elements shown
in Fig. 2(c). The next step is consolidation of the encoder.

IV. CoNTROLLER CONSOLIDATION

Consolidation is necessary for two reasons: 1) the method of Sec-
tion III does not assure that ¢? will be defined for every I?, and 2)
(8) is not a minimal form, which implies unnecessary quantization
of the X space. These inadequacies can be corrected by the dissecting
planes algorithm first proposed by Arkadev and Braveman [1],
whose steps are formalized here in terms of minimizing switching

functions. The objective is to find a minimal representation of (8),
while maintaining the mutual exclusive property of the elements of
gi, This is achieved by first assigning pON’T cARE conditions to all
vertices for which no control is defined and then performing the fol-
lowing steps.

Step 1: To check whether a redundant plane g; can be eliminated,
let 7; = 1 and test whether

Pl = 1)-[<E Fills = ”] —0, MIp=1d (9

j=1l
R
If so, then the I;th variable is removed (new k <— k% — 1);if not, I; is
reinstated. All planes (¢ = 1,k) are tested consecutively in this way.
Step 2: Step 1 can result in redundant representation of vertices.
To eliminate these from F,, test each of the terms consecutively as
follows. If

Joifo; = Sois

then f,; is redundant and can be eliminated (new d, < d, — 1). Each
F, function is tested in this way.

Step 3: To remove the redundant segments of plane g; in the output
function F,, let I; = 1 in the verlex fun. 1T

forany 7 = 1,dyand j = 7 + 1,d,, (10)

fvn(It' — 1)' JZ Z fjr(Il,‘ . -,Ik)] _ 0, VI”,U = l,d, (11>

=1,5s r=1,d;
v

then the term f,, becomes the reduced term f,.(Z; = 1); otherwise,
the former is resinstated. All the vertices are tested for the dimension
I, in this way. After this, the process is repeated for the next dimen-
sion, and so on, until all £ dimensions have been tested.

Step 4: As in Step 1, the merging of small regions into larger ones
has produced redundant vertices, and thus Step 2 must be repeated.

The result of removing redundant planes and redundant segments
of planes is that all unassigned regions I? are assigned controls.
Also, the algorithm unites into one region any two adjacent regions
assigned the same control. This gives a set of switching functionsin a
minimal sum-of-product form which, together with the encoder and
decoder, constitutes the consolidated controller.

V. Goar TRAINING

Using the controller obtained above, the algorithm returns to
retrain the goal function V. The stable controller generates trajec-
tories from random disturbed states to /. During each trajectory a
series of instantaneous costs L[z(m), w(I(m))]-T are stored in the
computer together with their associated states x(m). Once M is
reached, these costs are summed backwards to evaluate the summed
costs V' (z(m)) for each point along the trajectory. The stored values
of state are then quantized, and V(z(m)) is stored in its respective
quantized region as V(k(m)). Several trajectories are calculated in
this way. If parts of these trajectories overlap, values of V(&) are
averaged with those having a corresponding &. If at the end of a given
number of trajectories some regions are undefined, the computer
generates values of V(&) for these regions based on adjacent regions.
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Fig. 4. Solution to minimum-time problem.

VI. EXAMPLES

The behavior of the learning algorithm was studied by simulation.
For this purpose the particular unknown plant was chosen to be the

following:
[zl(m + 1)] _ [0 T].[zl(m)
zm+ 1) L0 1 Z2(m)
0 zlm + 1)
+[p]oem + 20 10] o

where T = 0.1 s and zrepresents a Gaussian process of zero mean and
a standard deviation of 0.05. The terminal manifold was defined as
|z} < 1.0 and the disturbance was given a uniform probability
density of lz;] < 10. Two overall goals were tested.

Goal 1: The overall goal for the minimum-time problem was to
minimize

p—1
Vim) = 3 T=(—-m7T (13)

where the control is limited to |u| < 10. The minimum principle
then enables one to choose the initial control set as U = [+10, —10].
The function V was stored as a 41 X 41 grid in the interval —20 <
z: < 20 with A = 1.0. For u(z), the X space was quantized by ten ran-
dom planes. A stable controller wg(z) was trained using an initial sub-
goal H = lz(m + 1)| — |z(m)]. Each controller training phase was
completed in less than 200 trajectories. The resulting switching sur-
faces after the sixth iteration are shown in Fig. 4.
Goal 2: The overall goal for the minimum-time-fuel problem was

p—1
Vztm)) = Y, 1+ )7

i=

(14)

Except for changing U = [+10, 0, —10], function storage was as
above. The algorithm was initialized by using us(2) from the above
example as the initial controller. The resulting decision surfaces
after the third iteration are shown in Fig. 5, and the controller which
would produce them is shown in Fig. 6. An interesting property of
this controller should be noted. The encoder, by mapping adjacent

ldeal Decision Surface
{for continous plan

U=-10

Jerminal Menifold

Trained®"
Decision
Surfoce

Solution to minimum-time-fuel problem.

Fig. 5.

regions of X space into adjacent vertices, maintains the spatial rela-
tionship of elements in X space in the quantized space. Single-bit
errors in the I code would only change the representation to some
adjacent region. Also, since the control code ¢* is linearly indepen-
dent, single-bit errors can easily be detected. Thus the codes 7 and ¢
Iay be transmitted along a noisy channel enabling remote on-line
control.

VII. CoNcLusiOoNs

This paper has studied the use of the method of successive ap-
proximations in generating a subgoal suitable for on-line learning
control. Although simulations were limited to linear plants, the sub-
goal is theoretically applicable to nonlinear unknown plants. The
usefulness of dissecting planes as a state encoder was also demon-
strated.
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Stability Criterion for N-Dimensional Digital Filters
J. H. JUSTICE axp J. L. SHANKS

Abstract—The stability requirement for one-dimensional re-
cursive filters is well known. A stability theorem for n-dimensional
recursive filters is proved wherein the denominator of the filter is an
n-dimensional power series. A Tauberian theorem due to Wiener
yields the desired result in the general case.

I. IXNTRODUCTION

Linear digital filtering is a useful tool for processing discrete se-
quences of data [1],[2]. It is used in a variety of applications, in-
cluding processing of seismic data, radar signals, cardiographic re-
cordings, and many other ‘‘signals” which have been sampled and
stored in digital form.

One of the more efficient types of digital filters is the ‘“‘recursive
filter”” [3],[4]. For one-dimensional sequences, the recursive filter
can be described by its z-transform

&

Z a2t E biz’ (1)

where the a and b coefficients define the filter. In applying this filter
to a data sequence, we use the recursive algorithm

B4 N
Yo = bo{z TiTni = Y b,-y,._,-} 2)

i=1

F(z) =

where the =, £ = 0,1,2,- - -, represent the input data sequence and
the yr, & = 0,1,2,- - -, represent the output sequence. In using this
algorithm, we assume that the z; and yz are zero for all & < 0.

This type of filter is used extensively in processing one-dimensional
sampled data. It is also possible to extend this technique to n-dimen-
sional data [3], [6], [10]. Such filters are useful in processing two-
dimensional data, such as seismic data sections, digitized photo-
graphic data, and gravity and magnetic maps. In the case of a two-
dimensional recursive filter, the filter can be deseribed using two-
dimensional polynomials or power series in (z),22), such as

F(21,22) = A(21,2:)/B(21,22) (3)
where
M, M.
A (2’1,22) = Z Z aij2) 1297 (4.)
1=05=0

Manuscript received October 27, 1972; revised January 29, 1973. Paper
recommended by J. C. Willems, Past Chairman of the IEEE S-CS Stability,
Nonlinear, and Dlstnbuted Systems Committee.

J. H. Justice is with the Department of Mathematics, University of Tulsa,
Tulsa, Okla. 74104.

J. L. Shanks is with the Research Center, Amoco Production Company,
Tulsa, Okla. 74102.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, JUNE 1973

and

N N

B(Z[,Zz) = Z E bklzlkZo (5)

k=01=0

A filtering algorithm similar to (2) can be written for the two-
dimensional and higher dimensional filters.

One of the problems in using recursive filters is stability. We re-
quire that the output of the filter not become unbounded if
the input is bounded. The stability depends on the coefficients of the
denominator of the recursive filters. In the case of the one-dimen-
sional recursive filter, it has been shown in many places that the filter
will be stable if the roots of the denominator polynomial B(z) are all
outside the z-plane unit circle [7]. However, these proofs all depend
on our ability to factor the polynomial B(z) into its distinet roots.
In the case of n-dimensional polynomials or power series, no such
factorization exists. Huang [11] has shown a proof for the two-
dimensional case in which the B(z),2;) is a finite polynomial. There-
fore, it is the purpose of this paper to state and prove the conditions
on the denominator polynomial or power series of an n-dimensional
recursive filter which will allow that filter to be stable.

II. DEVELOPMENT

Let us begin by developing the rationale for the precise definition
of stability which we shall use. It is well known that multiplication of
two power series may be performed by convolving their sequences of
coefficients; this is the process inherent in recursive digital filtering.
We shall not distinguish between a power series and its sequence of
coefficients but shall refer to a power series as a sequence, or vice
versa, when convenient. The term stability of a filter is generally
used to indicate that the result of convolving the filter with some
bounded input sequence should have, in some sense, a bounded out~
put. Since all of this is rather vague, let us be more precise. One of the
simplest classes of power series which we might choose to work with
is the class of power series in z and 1,z which has absolutely summable
coefficients. That is, those series of the form

®
Z a2t

n=—c

where

i [a,.l < o,

n=—o

This class offers the advantage that a product (convolution) of
two members of the class is again of this class. As a result, if a filter
and an input sequence are chosen from this class, the output sequence
must also be of this class, and so the filter is necessarily of the type
we choose to think of as stable. Since the recursive filter is in general
a quotient of two power series, we shall require that the two series be
of this class and seek the conditions which will guarantee that the
resulting quotient will again be represented by a power series in this
class. Our procedure will be to use a Tauberian theorem proved by
Wiener [9, p. 37] to derive the necessary criterion. Because this result
does not rely on dimension, but only on the algebraic and topological
structure of the class of absolutely summable sequences, we are
able to derive the stability criterion for the large class of N-dimen-
sional recursive filters. Our ultimate aim is to give the necessary and
sufficient condition that, given an N-dimensional absolutely sum-
mable power series in the denominator of the filter, the filter will be
stable no matter what N-dimensional absolutely summable numer-
ator may be chosen for the recursive filter.

To simplify our work in N-dimensions, let us use the following
notation.

Notation: We shall represent the integers by Z, the set of non-
negative integers by P, and the set of nonpositive integers by N.

The sequences (coefficients of power series) which we use must be
indexed. We shall consider index sets which belong to the set Z* X
P8 X N7 where «, 8, v are nonnegative integers. A zero exponent on



