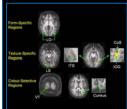


Separate Extrastriate Visual Regions Process Form and Texture in the Absence of Explicit Deployments of Attention

Jonathan S. Cant ^{1,2,3} Stephen R. Arnott^{1,3}, & Melvyn A. Goodale^{1,2,3} ¹Department of Psychology, University of Western Ontario, London, Ontario, Canada ²Neuroscience Program, University of Western Ontario, London, Ontario, Canada ³CIHR Group on Action and Perception

Results

Introduction



Fruit depicted in line drawings grayscale, and full colour

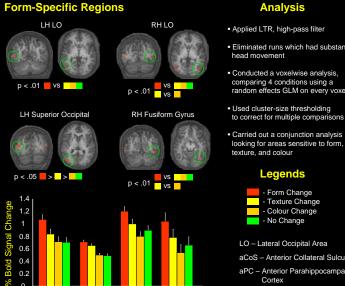
• Patient DF: compromised form perception, spared surface-property perception.

 Cerebral achromatopsics: spared form perception, compromised colour perception.

 Suggests separate form and surface-property pathways in the human visual system.

fMRI study of object recognition in healthy volunteers

fMRI study of object recognition in patient DF


 Cant & Goodale (2007) showed evidence of separate form and surface-property pathways using fMRI in healthy volunteers.

Object recognition is generally studied with a focus on form cues.

But how specialized are these separate pathways?

 We used an fMR-adaptation paradigm to examine the specialization of form, texture, and colour regions in occipito-temporal cortex.

otheses: area LO will be most sensitive to form and the Cos will Hypotheses: area LO will be most sensitive to form and the over be most sensitive to texture; not sure what to expect with colour.

Applied LTR, high-pass filter · Eliminated runs which had substantial

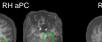
 Conducted a voxelwise analysis. comparing 4 conditions using a random effects GLM on every voxel

Analysis

Used cluster-size thresholding

 Carried out a conjunction analysis looking for areas sensitive to form, texture and colour

Legends



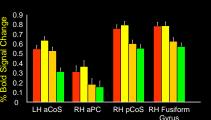
aPC - Anterior Parahippocampal Cortex

pCos - Posterior Collateral Sulcus

Note: No colour-specific regions were found

p < .05 VS VS p < .01 📕 vs RH Fusiform Gvrus

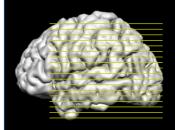



RH pCoS

Texture-Specific Regions

LH aCoS

Region


Method

Imaging Parameters

• 4T whole body fMRI scanner (Varian/Siemens) with an RF head coil

 17 axial slices, covering a large section of occipital, temporal, and parietal cortex

Scanned 17 healthy volunteers

Stimuli

• Computer rendered images of unfamiliar nonsense objects

· 4 different forms, colours, and textures

fMR-Adaptation

Experimental Design

Unrepeated

Form Trial

Repeated Form Trial

Stimulus Blocks

Only form

Only texture

Only colour

changes

changes

changes

Nothing


change

LH LO

LH Superior

Occipital

Region

RHLO RH Fusiform

Gyrus

interleaved with blocks 16-s long)

 Task: fixate cross in both stimulus and fixation blocks

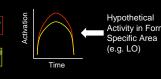
 Stimulus blocks: 16 images presented in 16-s

Summary and Discussion

Processing of form is mediated by area LO, and processing of texture is mediated by the CoS; no colour-specific cortical regions found.

Evidence from passive adaptation paradigm suggests that these regions can respond in a very stimulus-driven manner.

Along with other functional subdivisions of the ventral stream, is a gradient of processing for form and surface properties.


Studying the functional organization of the ventral stream will:

- 1) Help in the diagnosis and rehabilitation of patients with vision problems following cerebral damage.
- 2) Shed new light on the multidimensional functional organization of the object recognition pathways in the brain.
- 3) Help engineers in machine vision design better human-machine interfaces by utilizing both form and surface-property information.

References

Cant JS & Goodale, MA. (2007). Attention to form or surface properties modulates different regions of occipitotemporal cortex. Cerebral Cortex, 17, 713 - 731

James TW, Culham J, Humphrey GK, Milner AD, & Goodale MA. (2003). Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain, 126: 2463-2475

Fixation Block

 Stimulus blocks fixation blocks (all